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Finite Element Analysis of Transient Dynamic Viscoelastic 
Problems in Time Domain 

Woo-Jin Sim*, Sung-Hee Lee 

School of  Mechanical Engineering, Kum-Oh National Institute of Technology, 
1, Yangho-dong, Gumi, Gyungbuk 730-701, Korea 

In this paper, the simplified and stable finite element method is presented for the time domain 
analysis of the transient dynamic viscoelastic problems, for which the weak form is obtained by 

applying the Galerkin's method to the equations O f motion in time integral which do not contain 
the inertia terms explicitly, but the inertia effect is taken into account, and discretized spatially 
to obtain the semidiscrete equations in time integral. In the temporal approximation, only the 
time interpolation functions are used for approximating the dependent variables on the divided 
time axis, while the time integration schemes such as the Newmark and Houbolt methods are not 
necessary in contrary to the conventional approach. To show the validity and applicability, 

two-dimensional examples are given and solved for the displacements and stresses, especially for 
the dynamic stress concentrations by the wave diffraction, which are discussed in detail at the 
aspect of  the viscoelastic damping. To the authors' knowledge, no previous results except for the 

test example exist in the literature. 
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1. Introduction 

The equations of motion in terms of  displace- 
ments in the linear dynamic viscoelasticity are of 
integrodifferential and differential forms with re- 

spect to the time and space variables, respectively, 
and so the solving procedures become more com- 
plicated compared to those of the quasi-static vis- 
coelasticity and the dynamic elasticity, the stable 
and accurate numerical methodologies being re- 

quired. 
Up to now, the transient dynamic linear vis- 

coelastic problems have been analyzed in the 
time and transformed (Laplace or Fourier) do- 
mains mainly using the numerical t o o l s s u c h  
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as the FEM (Finite Element Method)(Barrett 
and Gotts, 2002 ; Golla and Hughes, 1985 ; Gou- 
dreau, 1970; Ha et al., 2002; Liu and Sharan, 
1995; Nickell, 1968, 1971; Spyrakos, 1987; Yi 
and Hilton, 1994), the BEM (Boundary Element 
Method) (Gaul and Schanz, 1999; Manolis and 
Beskos, 1981 ; P6rez-Gavil~n and Aliabadi, 2001 ; 
Polyzos et al., 1994), and the FDM (Finite Dif- 

ference Method) (Beskos and Leung, 1984 ;Chen  
and Cheng, 2000; Dey and Rao, 1997; Li et al., 
1992), which are sometimes combined with the 
sophisticated methods like the fractional deriva- 
tive model (Bagley and Torvik, 1985 ; Eldred et 
al., 1996 ; Enelund et al., 1999) and the spectral 

element technique (Doyle, 1988 ; Lee and Kim, 
2001). 

By the way, the equations of motion in inte- 

grodifferential form in the transient dynamic vis- 
coelasticity can be transformed into the equations 
of  motion in time integral through the use of 
convolution or the Laplace transform and its 

inversion, and which concept has been partially 
used in the numerical analysis of the transient 
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dynamic elasticity (Sim and Lee, 2002). But the 
applications of latter equations to the transient 
dynamic viscoelastic analysis are very few. For- 
merly, Nickell ( 1968 ; 1971) and Goudreau (1970) 
derived the semidiscrete finite element equations 
by taking the first variation of  the spatially dis- 
cretized Leitman's variational functional (Oden 
and Reddy, 1976). In the temporal approxima- 
tion, Goudreau introduced a one step quadra- 

ture formula similar to the Newmark method, and 
Nickell expressed the displacement as a quadra- 
tic function of time to insure the continuity of 
the displacement and velocity between the time 
intervals on the discretized time axis, but it was 
found later that his method produces a negative 

damping (i.e., unconditionally unstable). So, 
Nickell modified his method to be uncondition- 
ally stable using the technique similar to the 
Wilson's averaging method. But their methods 
still requires the time-integration schemes for the 
velocity and acceleration and their applications 
have been limited only to one-dimensional pro- 
blems. 

In this paper, the simplified and stable finite 
element equations in matrix form for the time 

domain analysis of the transient dynamic visco- 
elastic problems are newly presented based on 
the equations of  motion in time integral, for 
which the weak form is obtained by applying the 
Galerkin's method to those equations and dis- 
cretized spatially to obtain the semidiscrete equa- 
tions in time integral. In the temporal approxi- 
mation, the time integration schemes such as the 
Newmark and Houbolt methods (Bathe, 1996) 

are not necessary since the inertia terms are dis- 
appeared in those equations. Instead, only the 
time interpolation functions are used to approxi- 
mate the dependent variables on the discretized 
time axis, resulting in an implicit time integration 
scheme. The viscoelasticity matrix is derived by 
applying the elastic-viscoelastic correspondence 
principle to the elasticity matrix for the visco- 
elastic material which behaves elastically in di- 
latation and like a standard linear solid in shear. 

To show the validity and applicability of the 
presented method, two-dimensional examples with 
infinite and finite domains are solved for the 

displacements and stresses, especially for the dy- 
namic stress concentrations by the wave diffrac- 
tion, to the authors' knowledge, which solutions 

except for the test example are given for the first 
time in this paper, and the influences of  the vis- 
coelastic damping on the wave propagation are 
discussed in detail. 

2. Weak Formulation 

The governing equations of the linear dynamic 
viscoelasticity (Christensen, 1982) are similar to 
those of  the linear dynamic elasticity (Achenbach, 

1975) except the stress-strain relations of heredi- 
tary integral type and can be written as follows : 

(i) Equations of motion 

a,j,~(x, t )+pf , (x ,  t )=p~,(x ,  t) (1) 

where dij is the stress, p the mass density, f i  the 
body force per unit mass, ul the displacement, x 
the position vector, and t the time variable. 

(ii) Strain-displacement relations 

ei~(x, 1 tl t)} (2) 

where ~,.j is the small strain tensor. 
(iii) Stress-strain relations 

a~s(x, t )=D~m(t)*deh,(x ,  t) 

=fo/DS~k~(t_r)_ Oeh~(x,or r) d r  (3a) 

= ek~ (x, t) * dDi~k, (t) (3b) 

where D~m(t) is the viscoelasticity matrix of  
relaxation type, the operator * means the Stielt- 
jes convolution as defined in Eq. (3a), and the 
viscoelastic material is assumed to be undisturbed 
before the external force is applied at t = 0 .  
And the boundary and initial conditions are gi- 
ven by 

us(x, t)=z~i(t) on/ ' . ,  Ts(x, t)=~s(t) on/ ' ,  
(4) 

us(x, 0)=ds(x), fti(x, 0)=vs(x) at t=0  

where tl is the traction,/~u and Ft are the portions 
of the boundary ( / ' = / ' u + / ' t )  where the dis- 
placement and traction are specified, and di and 
v,. are the prescribed initial values for the dis- 
placement and velocity, respectively. 

Copyright (C) 2005 NuriMedia Co., Ltd. 



Finite Element Analysis of Transient Dynamic Viscoelastic Problems in Time Domain 63 

If  Eq. (2) is substituted into Eq. (3a) and then 
the expression for the stresses is subsequently 
substituted into Eq. (1), the equations of  motion 
in terms of  displacements are obtained as 

G( t) * du~(x, t) +{,t(t) + G(t) } * duha,(x, t) 
+pf, Oc, t)=o~,(x, t) (5) 

where G(t) and A(t) are the relaxation moduli 
corresponding to the Lam~ constants in the iso- 
tropic linear elasticity. Eq. (5) is the integro- 
differential equations of motion with respect to 
the time. 

Through the use of  convolution or the La- 
place transform and its inversion, Eq. (1) can be 
transformed into the equations of  motion in time 
integral in terms of stresses. 

g*at j~+g*pf~-o( - t v i -d i+ui )  = 0  (6) 

where g = g ( t ) = t  and the convolution in Eq. 

(6) is defined as g(t) *f(t) = s  dr. 

Eq. (6) contains the initial conditions impli- 
citly and no inertia terms, which is equivalent 
to Eq. (1) and known as the Euler equations of  
the variational functional for the linear dynamic 
viscoelasticity by Leitman (Oden and Reddy, 
1976). 

In this paper, the weak form for the time-do- 
main finite element analysis of the transient dyna- 
mic linear viscoelastic problems is obtained by 
applying the Galerkin's method to Eq. (6). That 
is, 

fQ[g* a, jo+ P{g* fi+ (tv,+ &) }--OU,] 8UdX2=O (7) 

where 22 represents the spatial domain. 

By applying the Gauss' theorem and Cauchy's 
stress formula to Eq. (7) and employing the re- 

lations aoSu~,~=ao~eo and arranging, the weak 
form is obtained under the assumption of  no 
body forces as 

f~g* a,,3r + 2pu,3u,d22 
(8) =s t,euidF + f~o(tv,+ d,) eu,dS~ 

Note that the inertia terms are disappeared in 

Eq. (8) so that the time-integration schemes such 

as the Newmark and Houbolt methods (Bathe, 

1996) to approximate the acceleration and veloc- 
ity are not necessary in this work. 

3. Finite Element  Equations 

For the development of  Eq. (8), the time axis 
is divided equally and then the dependent vari- 
ables are approximated on the divided time inter- 
val, At this time, the constant time variation is 
adopted because it has brought on uncondition- 
ally stable numerical results in the elastodyna- 
mic wave propagation analysis (Sim and Lee, 
2002). Then the displacements are approximated 
by the linear combinations of  spatial and time 
functions as 

N 

u~(x, t )=~O, ( t ) u~ (x )  O<t~t~ (9) 
n = l  

where #n(t) are the global time interpolation 
functions on the discretized time axis and (~n 

(t) =1  on tn-l~t<tn and (gn( t )=0  otherwise. 
The arbitrary and current time nodes are ex- 
pressed by tn=nAt and tn=NAt, respectively, 
and un(x) is the spatial distribution of the dis- 
placements in a time interval tn-l~ t<_ tn. 

By using Eq. (3a) and the commutativity law 
of  convolution, the first term on the left-hand 
side of  Eq. (8) can be written as 

s163 (10) 

where, 

Eok~(t) = g ( t )  * Di~(t) (11) 

In Eq. (10), The elements of Eokl (t) consist of  t 
and t 2 functions in addition to the exponential 

functions which are the elements of  the stiffness 
matrix of  the finite element equations for the 
quasi-static viscoelasticity. Dok~ (t) and Eok, (t) 
will be derived in the next section. By the inte- 

gration by parts, the convolution on the right- 
hand side of  Eq. (10) can be written as 

E~m (t) * de~ (x, t) =Eim (0) ek~ (x, t) 

- fo+tek~(x, r) dE~m(t-r)dr dr (12) 

It is assumed that the strains vary stepwise on 
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the discretized time axis as in Eq. (9). That is, 

N 

&s(x, t)=n~=lO.(t)e]j(x) (13) 

where end(x) is the spatial distribution of the 
strains in the nth time interval. 
Substitution of Eq. (13) into the second term on 
the right-hand side of Eq. (12) yields 

_f0)eht(r)  dE~m(t -r )  dr 
dr  

= -  s ~,O.(r)e~(x)  dE~m(t -r )  dr (14) 
.,o- ,,=~ dr 

N 

= -  ~ C~m (nAt) e~, (x) 
?/=1 

where, 

Coh~ (nA t) = Eis~{ ( N -  n)A t } 
- E ~ m { ( N - ( n - l ) ) A t }  (15) 

Substituting Eq. (14) into Eq. (12) and arrang- 
ing, we get 

N - 1  

E~m (t) * des, (x, t) = - ~ Cim (nAt) e~, (x) 
(16) 

+ E ~  (At) e~ (x) 

where the relations eat(x, t)=e~z(x) are used. 
Substituting of Eq. (16) into Eq. (10), and the 
resulting equation into Eq. (8), we obtain 

A t)   ,,dSa + 

= 2 g * t ,  Su,dF+ f~p(tv,+d~)Su,dS2 (17) 

+ a.,,asa 

The first term on the right hand side of Eq. 
(17) can be calculated analytically if the external 
forces are given, and so, for example, when the 
external force is applied suddenly at t = 0  and 
then keep constant thereafter, the results are ob- 
tained as 

t 2 s t, au,dr=Tf/,(x) au,dV (18) 

where ti(x, t)=E~(x)H(t),  and H(t)  is the 
Heaviside step function. 

Substituting Eq. (18) into Eq. (17) and writing 
in matrix form, the finite element equations for 
the analysis of the transient dynamic linear visco- 
elastic problems are obtained as follows: 

s [B] r [ E  (At) ] [B] dX2{ u, }~ 

+~p IN] "E N] dS2( u ,  } ~ 

t z = T 2  IN] r{ i; (x) }dF (19) 

+ s IN] rp (tv~ + &) ds 

+   =If EBJ'E C(nAt) l EBlaSa{.,}n 

In the derivation of Eq. (19), the following rela- 
tions are used. 

{ auk(x, t)}= [N~ r{ 8u,}~ 
(20) 

{ t) }= rB] T{  u,F 

where, {Su;} ~ is the virtual displacement vec- 
tor at t=&, IN] is the shape function matrix, 
[B] is the strain-displacement matrix, and the 
matrices [C(nAt) ~ [Coke(nAt) ] and [E(At)  ]= 
[Elm(At)  ] will be derived hereafter. 

From Eq. (11), 

E~skl(t) = fotg(t  -- r) * Diskt(r) dr 
(21) 

= -  t/7.~,(0) +15,s~, (t) - 5 . ~ ,  (o) 

where, 

Dim ( t ) = fo tDim (r) dr  

]3tin (t) = fo ' .Dim (r) dr  

(22) 

4. S tres s  C o m p u t a t i o n  
in M a t r i x  Form 

In the numerical analysis of the transient dyna- 
mic linear viscoelastic problems, the viscoelastic 
material is assumed to behave elastically in di- 
latation and like a standard linear solid in shear 
as shown in Fig. 1, which are expressed by 

G(t) =Go{a+(1-a)e-a'},  K ( t ) = / ~  (23) 

where G(t) and K(t)  are the relaxation m.oduli 
in shear and dilatation, respectively, and Go is 
the initial shear relaxation modulus, K0 is the 
elastic bulk modulus, a is the ratio between the 
asymptotic and initial relaxation moduli (0< 
a < l ) ,  and A is the inverse of the relaxation 
time &. 
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R 

Ko 

Fig. 1 Viscoelastic material 

4.1 Derivation of Eijm (t)  
The viscoelasticity matrix D i ~ ( t )  or ~D( t ) ]  

for an isotropic linear viscoelastic material can be 
derived by applying the elastic-viscoelastic corre- 
spondence principle to the elasticity matrix ~D] 
(Zienkiewicz and Taylor, 1991) for an isotropic 
linear elastic material and is given as follows for 
the case of  plane stress. 

Jan( t )  a1,(t) o ] 
[D( t ) ]=[d2 i~ t )  dz~(t) 0 

0 d~( t )  

where, 

(24) 

d,, ( t) =d2z ( t) =pl + l~e-"' + l~e-"' 

dt2( t) =d2~ (t) = q ,  + q2e-r ' t  + q3e -r** 

d~( t )  = w l + w 2 e  -~' 

and the coefficients p~, t)2, I~, q~, q2, qs, Wl, wz, 9"x 
and 72 are listed in the Appendix. 

Matrices [ /9 ( t ) ]  and [ D ( t ) ]  are obtained by 
integrating the viscoelasticity matrix [D (t) ] once 
and twice with respect to the time, respectively, 

o] 
0 

Y~(t) 
(25) 

and the latter is given as 

-aT, l(t)  ~12(t) 
[5(t)]= ~7~,(t) ~=(t) 

0 0 

where, 

~n( t )=~12~( t )=- (~+~z)+(  P 2 + ~ ]  9"l r2/ 

+ - ~ - t z + ( ~ e - r t t + ~ 2  e-r*t ) 

_ q2 
, 9 ' ,  

ql § f q2 o-rlt-L q3 e_rzt ) 

w2 4- W2 wl 2 I, o2 e_at Y~(t) = - - ~ - - W  t+~-  t +--U 
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And we get 

[D(0) ~ ---- [D (0) ] = 0  (26) 

Substituting Eq. (26) into Eq. (21), the following 
relations are obtained. 

E~m (t) =/~,jm (t) (27) 

Using the relations of Eq. (27), matrix CijkZ 
(nAt)  or [ C ( n A t ) ]  in Eq. (15) can be written 
as 

cz2(nAt) [ C(nAt) ]=[c21(oAt) 
0 

where, 

0] 
0 (28) 

c33(nAt) 

c,1 ( nZxt) = c22 ( nzxt)  = - ( ~ + ~  )zx t  
\ 71 9'z/ 

pl ( 2 N - 2 n +  1) (At) 2 
2 

+ ~ e  -~'<u-")~ ( 1 - e -~1~) 
9'1 

+ P 3  e _ , , < ~ _ . ~ ,  (1 - e - ' , ~ ' )  

(q2+qs) t cx2( nAt) =c2~ ( nAt) = - \  ~ -~2 / 

- ~ - ( 2 N - 2 n +  1) (At) 2 

+ q2 e_r,w_~)~, (1 -- e -~'At) 

+ qs e_rz(u_n)At (1 - -C  -r2At) 

.~l.At) =--~-  At--~-12N-2n+ l) IZxt) 2 

+ / ] 2  ewe2 ~-a(N-n)At ( t - -  e -aAt ) 

In the case of plane strain, the elements of  the 
viscoelasticity matrix [D ( t ) ]  are defined as in 
Eq. (29), and the coefficients P4,/~,/96, q4, qs, q6, 
wa, w2, 61 and $2 are listed in the Appendix. 

61 ( t ) = dzz ( t ) =t)4 + l~e -*' t + p~e -*'t 

6 z ( t )  =d2~(t) =q4+qse-* ' t+q6e  -~*t (29) 

63 ( t ) = w l  + w2e -a* 

4.2 Stress computation 

Stresses can be computed using either Eq. (3a) 
or (3b), but the latter is adopted in this work 
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and rewritten in matrix form as 

{ o'(x, t)}'= fo_'{ e(x, t-r)}T-~r [D(r) ]dr 
={e(x ,  t)}r[D(0) ] (30) 

where the superscript T means the transpose of 
the matrix. 

The strain in Eq. (13) can be written in matrix 
form as 

N 

{e(x,  t ) } = ~ . ( t ) { e , 5 ( x ) }  
? t= l  

N 

= ~ , ~ . ( t ) { e ( x ,  n a t ) }  
n = l  

(31) 

And substitution of  Eq. (31) into Eq. (30) yields 

N 

{a(x, t)}r={e(x, t)}r[D(O)]-~l{e(x, nat)} r (32) 

[D{ (N-n)  At }-D{ ( N - n +  I) At }] 

Note that the summation operator in Eq. (32) is 
performed from n = l  to n = N  while the upper 
limit of  that in Eq. (19) is n = N - l .  

5. N u m e r i c a l  E x a m p l e s  

In the previous section, the relaxation mo- 
dulus in shear is assumed to behave like a stand- 
ard linear solid, which is illustrated by the 

spring-dashpot model made up of  two springs 
(GO, R) and one dashpot (77) as shown in Fig. 1. 
The stress-strain behaviour of  that model could 
be described by either the hereditary integral as 
in Eq. (3) or the differential equation (Fliigge, 
1975) as 

And the viscoelastic material data for numerical 
examples are given as follows (Goudreau, 1970): 

p =  1.8 X 10 -5 Nsec2/cm 4, C-0= 1.275 X 105 N/cm 2 

/(o=2.35 X l0 s N/cm z, 0t=0.098, A=I  X l0 s sec -~ 

r/=0.1413 Nsec/cm 2, R = 1.386 x 104 N/cm 2 

From these data, the dilatational wave speed is 
calculated as ca = 1.5 X l0 s cm/sec. 

5.1 Viscoelastic half-space subject to a sud- 
den step pressure 

Suppose that a half-space of the isotropic line- 
ar viscoelastic material is initially undisturbed 
and at t = 0  its boundary is subject to a sudden 

step pressure aoH(t).  The finite element mesh 
with isoparametric quadratic quadrilateral ele- 
ments (L / l=24 ,  I=0.0375cm) and boundary 
conditions are given as in Fig. 2, and the numeri- 

cal analysis is performed under the condition of  
plane strain. 

In Figs. 3 and 4, the present results for the 
wave propagation of  stress obtained by using 24 

finite elements are depicted at t = 2  and 4/lsec 
and compared with Nickell's analytical solution 
(1968) and Goudreau's numerical results (1979) 
by the higher order mass model, and it is observed 
that the present results show a good agreement 
with Nickell's solution compared to Goudreau's 
results with spurious oscillations. We have also 
tried this computation using 12 finite elements 
and obtained the numerical results of  almost the 
same accuracy except some more deviation near 
the wave front. 

In Fig. 5, the effects of  viscosity (~7) on the 

d + Pl(~=qoe+ ql~ (33) z/i 

where, p, = 7//(GO + R) ,  q0= GOR/(GO + R) ,  and 
q,= CoV/ ( Co+ R). 

So there exist some relations between the co- 
efficients of  Eqs. (23) and (33), which are given 
as 

Go = ql/ P,, a=  qoPJ q, = R~ ( Go Jr- R) 

A=t~'=p-; '= ( GO + R) / v  
(34) 

r [ti<', 
Fig. 2 Finite element model for the viscoelastic 

half-space 
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longitudinal displacements (Ux) are depicted at 

t = 2 ,  4 and 6/.tsec. It is observed that the displa- 

1 . 2  

1 . 0 ,  

0 , S .  

=*o.e. 

0.4.  

0.2 �9 

0.0-  

0.00 

Fig. 3 

1 � 9  

�9 - - :  N [ffxeH 
�9 : G0udreau 

�9 �9 ~ : P~esent 

O 

O 

o;5 o~o o.~.~ o;o o~5 o99 

x (cm) 

Axial stress of the viscoelastic half-space at 
t = 2  psec 

1 , 0 -  

0 . 8 -  

ro ~ 0.6 - 

0 . 4  

0 . 2  - 

0 , 0 -  

8.00 

Fig, 4 

�9 - - :  N ~ I  
�9 * : Go~xlreau 

�9 �9 �9 �9 o :Pte,s~t 

�9 , ~ , , ; 
0.18 0, 0.45 0,60 0. 5 0.90 

x (era) 

Axial stress of the viscoelastic haif-space at 
t=4/zsec 

2 .8 -  ~ .  --~.-,-~>-,--o--: l=2.4,6psec:n=o.1413[~ven} 

2 4 - ~ , ,  -~, --, ~ : t = 2, 4, 6 psec ; q=0:00~413 (decreased) 

' 0  - " 

'~ t2- 

0..% -%... 

I �9 I �9 i �9 1 , i , r �9 

0.00 0,15 0.30 0.45 0.60 0.75 0.90 

x (cm) 

Fig.  5 Effects o f  the viscosity on the displacement 

wave propagation 

cement wave with a small viscocity (z~=0.001413) 

follows behind the other two waves with higher 

viscosities due to the reduced stiffness of the 

viscoelastic material and reaches the equilibrium 

state in a short time, and the displacement be- 

comes soon larger than the other two responses. 

Note that the slope of the curve, i.e., the strain, is 

constant when the equilibrium state is reached. 

The opposite response is obvious when the mag- 

nitude of viscosity becomes higher. For reference, 

the time step in this computation is A t =  1.5625 • 

10 -8 see, which is 1/16 times of the time for the 

viscoelastic compression wave to travel across a 

finite element�9 

5.2 Viscoelast ic  plate with a circular hole 
subject to a sudden tensile load 

The viscoelastic plate (40 • 20 • 1 cm) with a 

circular hole ( r = 5  cm) is subject to a sudden 

tensile load aoH(t) at both ends. Capitalizing on 

the symmetry of the problem, a quarter of the 

plate is discretized as shown in Fig. 6, where 

the finite element mesh is composed of 76 ele- 

ments and 269 nodes, and the numerical analysis 

is performed under the condition of plane stress. 

The displacement in the direction of y-axis and 

the normalized normal stress, i.e., the dynamic 

stress concentration factor, in the direction of 

x-axis at point A around the circular hole are 

depicted in Figs. 7 and 8, and it is observed 

from those two figures that as the value of a 

becomes smaller the curve of the viscoelasto- 

dynamic wave is shifted to the right with some 

dispersion compared to the elastodynamic solu- 

2 0 c r ~  

Fig. 6 Finite element model for the viscoelastic plate 
with a circular hole 

Copyright (C) 2005 NuriMedia Co., Ltd. 



68 Woo-Jin Sire and Sung-Hee Lee 

tion (v=0.2703) .  It is hard to find the visco- 

elastodynamic solutions, whether numerical or 

theoretical, in the literature, so that the numeric- 

al data obtained by running the elastodynamic 

program (Sim and Lee, 2002) which has been 

tested by various ways are adopted for the com- 

parison of the numerical results. For  reference, 

The time step for this computation is A t =  

2.691• 10 -8 sec, and ~=0.2703 is the Poisson's 

ratio corresponding to the initial relaxation mo- 

duli Go and K0. In Fig. 7, the displacement curve 

for the case of  ~r=0.098 is omitted because it 

shows a relatively too large curve with a single 

peak ( u y = - - l . 0 1 2 9 c m  at t=0.00134sec)  com- 

pared with the other curves. 

, , vnc'oelastodynamr (~=o 98, 08. 03) 
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Fig. 7 Vertical displacements at point A on a circu- 
lar hole in the viscoelastic plate 

5.3 W a v e  di f fract ion by a cyl indrical  cav i ty  
in an inf ini te  v i s coe la s t i c  medium 

Consider a long cylindrical cavity in an infi- 

nite isotropic linear viscoelastic medium imping- 

ed upon by a compressional P-wave whose front 

is parallel  to the axis of  cavity. Manolis and 

Beskos (1981) solved this problem in the Laplace 

domain by using the BEM only for the Maxwell 

and Kelvin materials. 

In Fig. 9, the finite element model is given 

for this analysis, where only a half  of an infinite 

domain is discretized by 238 finite elements 

utilizing the symmetry of the problem about the 

x-axis, and the artificial boundary is constructed 

far away from the cylindrical cavity to avoid the 

undesirable reflection. 

In Figs. 10 and 11, the x-displacements and 

dynamic stress concentration factors at the point 

of 0 = 9 0  ~ on the boundary of the cylindrical 

cavity are computed under the condition of plane 

strain and compared with the elastodynamic nu- 

merical results (Sim and Lee, 2002) for the vari- 

ation of a values (0.098, 0.5, 0.8). It is observed 

from those two figures that the viscoelastodyna- 

mic curve adheres closely to the elastodynamic 

curve as the value of  a approaches to unity, i.e., 

the damping of the material decreases, and the 

viscoelastic wave speed becomes lower due to the 

relaxed stiffness of the viscoelastic material and 

the attenuation increases as the value of  a ap- 

proaches to zero. For  reference when the value 
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Finite element model for the infinite visco- 
elastic medium with a cylindrical cavity 
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Fig. 10 Axial displacements at 0=90 ~ on a cylindri- 
cal cavity in the infinite viscoelastic medium 
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Tangential stresses at 0=90 ~ on a cylindri- 
cal cavity in the infinite viscoelastic medium 

of a is equal to zero the standard linear solid 
model becomes the Maxwell model. The maxi- 

mum values of  the dynamic stress concentration 
factors for a=0.8 ,  0.5, and 0.098 are --2.836 ( t =  
1.43 X 10 -s see), --2.772 (t = 1.60 X 10 -3 see), and 

--2.456 ( t= l .87X10-Ssec) ,  respectively, which 
are compared with --2.884 ( t=1.33 • 10 -3 sec) 

and --2.67, in the case of  the dynamic and static 
elasticities, respectively. For reference, the time 
step for this computation is At----- 1.3333 • 10 -~ sec. 

6. Conc lus ion  

Time-domain finite element method based on 

the equations of  motion in time integral has 
been presented for the general analysis of  the 

transient dynamic linear viscoelastic problems. 

The weak form is obtained by applying the 
Galerkin's method to those equations and dis- 

cretized spatially to obtain the semidiscrete equa- 
tions in time integral. In the temporal approxi- 

mation, the stepwise time interpolation func- 
tions are adopted to approximate the dependent 
variables on the discretized time axis, the simpli- 
fied and unconditionally stable finite .element 
equations being obtained. Two-dimentional ex- 
amples with infinite and finite viscoelastic me- 

diums have been solved successfully for the dyna- 
mic stress concentrations by the wave diffraction, 
which solutions are given nowhere in the litera- 
ture. Currently, we are applying this method to 
the viscoelastodynamic fracture positively. So it 
may be said that this method is one of the useful 
numerical tools for the transient dynamic visco- 
elastic analysis. 

R e f e r e n c e s  

Achenbach, J.D., 1975, Wave Propagation in 
Elastic Solids, North-Holland, Amsterdam. 

Bagley, R.L.  and Torvik, P.J., 1985, "Frac- 
tional Calculus in the Transient Analysis of Vis- 
coelastically Damped Structures," AIAA, Vol. 23, 
No. 6, pp. 918~925. 

Barrett, K.E.  and Gotts, A.C. ,  2002, "Finite 
Element Analysis of a Compressible Dynamic 
Viscoelastic Sphere Using FFT," Comput. 
Struet., Vol. 80, pp. 1615~1625. 

Bathe, K. J., 1996, Finite Element Procedures in 
Engineering Analysis, Prentice-Hall, Englewood 
Cliffs. 

Beskos, D. E. and Leung, K.L.,  1984, "Dyna- 
mic Response of Plate Systems by Combining 
Finite Differences, Finite Elements and Laplace 
Transform," Comput. Struet., Vol. 19, No. 5-6, 
pp. 763--775. 

Chen, X. and Cheng, C., 2000, "Discrete In- 
verse Method for Viscoelastic Medium with 
Complete Data," Comput. Methods Appl. Mech. 
Engrg., Vol. 189, pp. 77--90. 

Christensen, R.M. 1982, Theory of  Viscoelas- 
ticity, Academic Press, New York. 

Dey, S.S. and Rao, V.T. 1997, "Transient 

Copyright (C) 2005 NuriMedia Co., Ltd. 



70 Woo-Jin Sim and Sung-Hee Lee 

Response of Circular Plates and Membranes : A 
Numerical Approach," Int. J. Mech. Sci., Vol. 39, 
No. 12, pp. 1405~ 1413. 

Doyle, J.F., 1998, "A Spectrally Formulated 
Finite Element for Longitudinal Wave Propaga- 
tion," Int. J. Analyt. Exper. Modal Anal., Vol. 3, 
pp. 1~5. 

Eldred, L.B., Baker, W.P. and Palazotto, A. 
N., 1996, "Numerical Application of Fractional 

Derivative Model Constitutive Relations for 
Viscoelastic Materials," Comput. Struct., Vol. 60, 
No. 6, pp. 875~882. 

Enelund, M., M~ihler, L., Runesson, K. and 
Josefson, B. L., 1999, "Formulation and Integra- 
tion of the Standard Linear Viscoelastic Solid 
with Fractional Order Rate Laws," Int. J. Solids 
Struct., Vol. 36, pp. 2417~2442. 

Fliigge, W., 1975, Viscoelasticity, 2nd edn., 
Spriger-Verlag, Berlin. 

Gaul, L. and Schanz, M., 1999, "A Compara- 
tive Study of Three Boundary Element Appro- 
aches to Calculate the Transient Response of 
Viscoelastic Solids with Unbounded Domains," 
Comput. Methods Appl. Mech. Engrg., Vol. 179, 

pp. l l l ~  123. 
Golla, D. F. and Hughes, P.C., 1985, "Dyna- 

mics of Viscoelastic Structures - -  A Time-Do- 
main Finite Element Formulation," J. Appl. 
Mech., Vol. 52, pp. 897 ~ 906. 

Goudreau, G. L., 1970, "Evaluation of Discrete 

Methods for the Linear Dynamic Response of 
Elastic and Viscoelastic Solids," Report No. 69- 
15, Structures and Material Research, Depart- 
ment of Civil Engineering, Structural Engineering 
Laboratory, University of California, Berkeley, 

California. 
Ha, T., Santos, J.E. and Sheen, D., 2002, 

"Nonconforming Finite Element Methods for 

the Simulation of Waves in Viscoelastic Solids," 
Comput. Methods AppL Mech. Engrg., Vol. 191, 

pp. 5647 ~ 5670. 
Lee, U. and Kim, J., 2001, "Spectral Element 

Modeling for the Beams Treated with Active Con- 
strained Layer Damping," Int. J. Solids Struct., 
Vol. 38, pp. 5679~ 5702. 

Li, X. J., Liao, Z. P. and Du, X. L., 1992, "An 
Explicit Finite Difference Method for Viscoelas- 

Copyright (C) 2005 NuriMedia Co., Ltd. 

tic Dynamic Problems," Earthq. Engrg. Engrg. 
Vib., Vol. 12, No. 4, pp. 74~80. 

Liu, J. and Sharan, S.K., 1995, "Analysis 
of Dynamic Contact of Cracks in Viscoelastic 

Media," Comput. Methods Appl. Mech. Engrg., 
Vol. 121, pp. 187~200. 

Manolis, G. D. and Beskos, D. E., 1981, "Dyna- 
mic Stress Concentration Studies by Boundary 
Integrals and Laplace Transform," Int. J. Numer. 
Methods Eng., Vol. 17, pp. 573~599. 

Nickell, R. E., 1968, "Stress Wave Analysis in 
Layered Thermoviscoelastic Materials by the 
Extended Ritz Method," Technical Report S-175, 
VII, Rohm & Haas Co., Redstone Research La- 
boratories, Huntsville, AI. 

Nickell, R.E., 1971, "On the Stability of Ap- 
proximation Operators in Problems of Struc- 
tural Dynamics," Int. J. Solids Struct., Vol. 7, 
pp. 301-319. 

Oden, J. T. and Reddy, J. N., 1976, Variational 
Methods in Theoretical Mechanics, Springer- 

Verlag, Berlin. 
P6rez-Gavil~n, J.J. and Aliabadi, M.H., 

2001, "A Symmetric Galerkin Boundary Ele- 

ment Method for Dynamic Frequency Domain 
Viscoelastic Problems," Comput. Struct., Vol. 79, 
pp. 2621 ~2633. 

Polyzos, D., Stamos, A. A. and Beskos, D. E., 
1994, "BEM Computation of DSIF in Cracked 
Viscoelastic Plates," Commun. Numer. Methods 
Engng., Vol. 10, No. 1, pp. 81~87. 

Sim, W.J. and Lee, S.H., 2002, "Transient 
Linear Elastodynamic Analysis in Time Do- 
main Based on the Integro-Differential Equa- 
tions," Int. J. Struct. Eng. Mech., Vol. 14, No. 1, 

pp. 71 ~84. 
Spyrakos, C.C., 1987, "Exact Finite Element 

Method Analysis of Viscoelastic Tapered Struc- 
tures to Transient Loads," in W. Pilkey and B. 
Pilkey, eds., NASA 58th Shock and Vibration 
Symposium, Vol. 1, NASA, Washington D.C. 

pp. 361--375. 
Yi, S. and Hilton, H.H., 1994, "Dynamic Fi- 

nite Element Analysis of Viscoelastic Com- 
posite Plates in the Time Domain," Int. J. Numer. 
Methods Eng., Vol. 37, pp. 4081~4096. 

Zienkiewicz, O.C. and Taylor, R.L., 1991, 



Finite Element Analysis o f  Transient Dynamic Viscoelastic Problems in Time Domain 71 

The Finite Element Method, Vol. II, 4th edn., 
McGraw-Hill ,  London. 

Appendix 

The coefficients o f  the viscoelasticity matrix 

ml=12KoGo + 4G~ 

m~= 12KoGo/l + 12KoGoa/l + 8 C~a/l 

m s =  12KoGoa,t2+4Gozaz,~ 2, m4=3 /~Go+4Go  z 

ra,=3IGGoA+ 3KoGoaA+ 8GZaA 

rm= 3KoGoa~2 + 4G~a2AZ 

nl = 6 K o G o - 4 G o  2 

nz =6  Ko GoA + 6 Ko Goa,~ - 8 C~ aA 

ns=6KoGoahZ-4C~aZA2, n i =  3 KoGo-  2GZo 

ns = 3 Ko GoA + 3 Ko GoaA - 4 Gg aA 

n6 = 3 Ko Goa,~Z - 2 G~ a2 A 2 

a l=3Ko+4Go,  a2=3Go 

b~ =6 Ko~t + 4 Goa~ + 4 GoA, b2= 3 GoA + 3 Goa,~ 

cl=3Ko,~z+4GoCt,~ 2, cz= 3 GoCg,~ ~ 

- bl +_ ,/ bZ--4alcl 
71, 7z= 2al 

- b= +_ J b~-4a2c2 
Sx, ~2 = 2az 

ms ml 7~-- m2 71 + ms 
Pl-- a1~'172' #2-- 71a~(71--72) 

ml~2-m2~'2+m3 

m4521 -- m551 + rm m 4 ~ - -  msSz + me 
P~- $~a~(#l-&) 'P~ -  #2a~(#~-$~) 

ns n x ~ - -  n2zl + ns 
q1--a1717z, qz-- 71a1(71--Zz) 

nl ~ - -  nz 72 + na n6 

qs= r2al (72- rl) ' q '=  a ~ 2  

n45~- ns~l + m n 4 ~ -  n552 + n6 
as--  $1a2($1-$z) ' q6 $'2az(8~-~1) 

GoA- Goa,~ 
wl : Goa, w2= 
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